Хлор
Содержание:
- Химические свойства хлорида водорода
- Недостаточность и избыток хлора в организме
- Причины отравления хлором
- Хлор в природе.
- История получения.
- [править] История
- Чем опасен хлор?
- Хлор в жизни организмов и растений
- Получение хлора.
- Хлор в природе
- Симптомы отравления хлором
- Производство отравляющих газов в России
- Свойства
- Плотность хлора
Химические свойства хлорида водорода
Сам хлороводород обычно в реакции не вступает. Лишь только при высокой температуре (более 650 °С) он реагирует с сульфидами, карбидами, нитридами и боридами, а также оксидами переходных металлов. В присутствии кислот Льюиса может взаимодействовать с гидридами бора, кремния и германия. А вот ее водный раствор гораздо более химически активен. По своей формуле хлористый водород — это кислота, поэтому он обладает некоторыми свойствами кислот:
- Взаимодействие с металлами (которые стоят в электрохимическом ряду напряжений до водорода): Fe + 2HCl = FeCl2 + H2
- Взаимодействие с амфотерными и основными оксидами: BaO + 2HCl = BaCl2 + H2O
- Взаимодействие со щелочами: NaOH + HCl = NaCl + H2O
- Взаимодействие с некоторыми солями: Na2CO3 + 2HCl = 2NaCl + H2O + CO2
- При взаимодействии с аммиаком образуется соль хлорида аммония: NH3 + HCl = NH4Cl
Но соляная кислота не взаимодействует со свинцом из-за пассивации. Это обусловлено образованием на поверхности металла слоя хлорида свинца, который нерастворим в воде. Таким образом, этот слой защищает металл от дальнейшего взаимодействия с соляной кислотой.
В органических реакциях она может присоединятся по кратным связям (реакция гидрогалогенирования). Также она может реагировать с белками или аминами, образуя органические соли — хлоргидраты. Искусственные волокна, типа бумаги, при взаимодействии с соляной кислотой разрушаются. В окислительно-восстановительных реакциях с сильными окислителями хлороводород восстанавливается до хлора.
Получение хлорида водорода
Ранее в промышленности соляную кислоту получали путем взаимодействия хлорида натрия с кислотами, обычно с серной:
Но этот способ недостаточно эффективен, а чистота получаемого продукта невысока. Сейчас используется другой способ получения (из простых веществ) хлористого водорода по формуле:
Для реализации такого способа существуют специальные установки, где оба газа подаются непрерывным потоком на пламя, в котором происходит взаимодействие. Водород подается в небольшом избытке для того, чтобы прореагировал весь хлор и не загрязнял получаемый продукт. Далее хлороводород растворяют в воде и получают соляную кислоту.
В лаборатории возможны более разнообразные способы получения, например гидролиз галогенидов фосфора:
Получить соляную кислоту можно и путем гидролиза кристаллогидратов некоторых хлоридов металлов при повышенной температуре:
Также хлороводород является побочным продуктом реакций хлорирования многих органических соединений.
Недостаточность и избыток хлора в организме
Учитывая, что заготовленные впрок продукты содержат соль, а очистка водопроводной воды выполняется с помощью хлора, нехватка хлоридов в здоровом организме – редкое явление. Однако, часто дефицит макроэлемента возникает на фоне патологической дисфункции внутренних органов.
Причины, провоцирующие недостаточность хлора в организме:
- продолжительное соблюдение бессолевых диет, голодание;
- повышенное потоотделение:
- состояния, сопровождающиеся обезвоживанием организма (рвота, частое мочеиспускание);
- злоупотребление слабительными, кортикостероидами и диуретиками;
- искусственное вскармливание младенцев;
- нарушение работы надпочечников;
- воспаление пищеварительного тракта (перфоративные язвы двенадцатиперстной кишки и желудка, перитонит);
- патологии, связанные с увеличением концентрации межклеточного вещества;
- андренокортикальная недостаточность.
Указанные факторы, в 80 % случаев провоцируют дестабилизацию кислотно – щелочного равновесия, что влечёт за собой нарушение обменных процессов в организме.
Симптомы гипохлоремии:
- сонливость, вялость;
- мышечная слабость;
- выпадение волос;
- замедление мыслительных способностей;
- «крошение» зубов;
- отёки;
- снижение артериального давления;
- потеря аппетита, веса;
- тошнота, рвота;
- повышение остаточной концентрации азота в крови;
- судороги;
- сухость во рту;
- «провалы» в памяти;
- нарушения мочеиспускания.
Резкое уменьшение хлора в крови на фоне острой гипохлоремии чревато развитием тяжёлого состояния вплоть до комы или летального исхода.
Избыток хлора, в 80 % случаев, возникает у людей, работающих в фармацевтической, химической, целлюлозно-бумажной и текстильной промышленностях. Помните, вдыхание концентрированных хлорных паров оказывает губительное влияние на человеческий организм из-за торможения дыхательного центра и обжигания «бронхиального ствола».
В повседневной жизни передозировка макроэлемента практически невозможна, поскольку 90-95% вещества выводится с мочой, 4–8 % – с калом, 1–2 % – с потом.
Рассмотрим какие факторы провоцируют гиперхлоремию (чрезмерное повышение концентрации хлора в крови).
- Острая почечная недостаточность.
- Несахарный диабет.
- Продолжительный понос.
- Отравление салицилатами.
- Ацидоз почечных канальцев.
- Гиперфункция коры надпочечников.
- Повреждение гипоталамуса.
- Злоупотребление андрогенами, кортикостероидами, эстрогенами, тиазидами.
Помимо этого, дезинфекция питьевой воды при помощи хлора приводит к образованию канцерогенных соединений (хлороформа, хлорфенола, хлоридов) в ней, которые провоцируют развитие респираторных заболеваний, гастритов, пневмоний.
Признаки гиперхлоремии:
- едкий сухой кашель;
- боли в груди;
- резь в глазах;
- диспепсические расстройства;
- слезотечение;
- сильная головная боль;
- сухость во рту;
- тяжесть в области желудка;
- метеоризм;
- тошнота, изжога.
Если продолжительное время не купировать гиперхлоремию, происходит накопление воды в тканях и органах, что ведёт к стойкому повышению кровяного давления. В тяжёлых случаях избыток вещества в организме сопровождается подъёмом температуры тела и токсическим отеком легких. Стабилизировать водно-солевой баланс поможет уменьшение количества потребляемой соли, а также контроль качества выпиваемой воды.
Для обесхлоривания жидкости целесообразно использовать механизмы многоуровневой очистки, угольные фильтры, кипятить или отстаивать ее на протяжении 6 – 8 часов.
Причины отравления хлором
Отравление хлором обычно происходит по неосторожности на производстве или в бытовых условиях. Чаще всего избыток вещества попадает в организм следующим образом:
- вдыхание хлора, например, при посещении бассейна с хлорированной водой;
- случайное употребление ядохимикатов, жидкости с хлором;
- работа на производстве без соблюдения техники безопасности;
- попадание хлорного раствора на кожу или слизистые оболочки.
В результате попадания вещества внутрь развивается одна из форм отравления: легкая, средняя, тяжелая и молниеносная. При контакте с кожными покровами хлор вызывает химический ожог.
Хлор в природе.
Хлора в земное коре не очень много – всего 0,017%, причем в свободном состоянии он встречается лишь в небольших количествах в вулканических газах. В списке самых распространенных элементов хлор находится в конце второго десятка. Хлора меньше, чем даже ванадия и циркония (но больше, чем хрома, никеля, цинка, меди и азота). При этом хлор очень сильно распылен: небольшие количества этого элемента входят в состав множества различных минералов и горных пород. Очень высокая химическая активность хлора приводит к тому, что в природе он встречается, как правило, в виде соединений, в сочетании с натрием, калием, магнием, кальцием.
Хлор образует около ста минералов; главным образом это хлориды легких металлов – щелочных и щелочноземельных. Самый распространенный среди них – галит NaCl. Реже встречаются хлориды калия, кальция, магния. Из них наиболее распространены бишофит MgCl2·6H2O, карналлит KCl·MgCl2·6H2O, сильвин KCl, сильвинит NaCl·KCl, каинит KCl·MgSO4·3H2O, тахигидрит CaCl2·2MgCl2·12H2O. В виде таких соединений хлор содержится в соляных пластах, образовавшихся при высыхании древних морей. Особенно мощные залежи образует галит и калийные соли; их запасы оцениваются гигантским числом – более 10 триллионов тонн!
Очень много хлора содержится в морской воде – в среднем 1,9%. Происходит это потому, что хлор вымываемый из пород, нигде не может задержаться (почти все хлориды металлов растворимы) и выносится реками в моря и океаны. Но не следует думать, что попавший в морскую воду хлор уже не может вернуться на материки. В обратной миграции хлора большую роль играет ветер, уносящий соленую пыль с поверхности океанов, морей и соленых озер. Так хлор участвует в круговороте веществ. Но в засушливых и пустынных районах в результате интенсивного испарения воды концентрация хлора в грунтовых водах сильно повышается. Так образуются солончаки, особенно в низинах. Из различных источников ежегодно в мире добывают сотни миллионов тонн хлора.
Растворы хлоридов – обязательная составная часть живых организмов. Содержание хлора в теле человека 0,25%, в плазме крови – 0,35%. В теле взрослого человека содержится более 200 г хлорида натрия, из которых 45 г растворено в крови. В продуктах питания и природной воде часто недостаточно хлора для нормального развития человека, поэтому с древних времен люди подсаливают пищу. Вводят хлор и в подкормку животных. Растения же, в отличие от животных, никогда не испытывают дефицита хлора.
История получения.
Хлор, вероятно, получали еще алхимики, но его открытие и первое исследование неразрывно связано с именем знаменитого шведского химика Карла Вильгельма Шееле. Шееле открыл пять химических элементов – барий и марганец (совместно с Юханом Ганом), молибден, вольфрам, хлор, а независимо от других химиков (хотя и позже) – еще три: кислород, водород и азот. Это достижение впоследствии не смог повторить ни один химик. При этом Шееле, уже избранный членом Шведской королевской академии наук, был простым аптекарем в Чёпинге, хотя мог занять более почетную и престижную должность. Сам Фридрих II Великий, прусский король, предлагал ему занять пост профессора химии Берлинского университета. Отказываясь от подобных заманчивых предложений, Шееле говорил: «Я не могу есть больше, чем мне нужно, а того, что я зарабатываю здесь в Чёпинге, мне хватает на пропитание».
Многочисленные соединения хлора были известны, конечно, задолго до Шееле. Этот элемент входит в состав многих солей, в том числе и самой известной – поваренной соли. В 1774 Шееле выделил хлор в свободном виде, нагревая черный минерал пиролюзит с концентрированной соляной кислотой: MnO2 + 4HCl Cl2 + MnCl2 + 2H2O.
Вначале химики рассматривали хлор не как элемент, а как химическое соединение неизвестного элемента мурия (от латинского muria – рассол) с кислородом. Считалось, что и соляная кислота (ее называли муриевой) содержит химически связанный кислород. Об этом «свидетельствовал», в частности, такой факт: при стоянии раствора хлора на свету из него выделялся кислород, а в растворе оставалась соляная кислота. Однако многочисленные попытки «оторвать» кислород от хлора ни к чему не привели. Так, никому не удалось получить углекислый газ, нагревая хлор с углем (который при высоких температурах «отнимает» кислород от многих содержащих его соединений). В результате подобных опытов, проведенных Гемфри Дэви, Жозеф Луи Гей-Люссаком и Луи Жаком Тенаром, стало ясно, что хлор не содержит кислорода и является простым веществом. К тому же выводу привели и опыты Гей-Люссака, который проанализировал количественное соотношение газов в реакции хлора с водородом.
В 1811 Дэви предложил для нового элемента название «хлорин» – от греч. «хлорос» – желто-зеленый. Именно такой цвет имеет хлор. Этот же корень – в слове «хлорофилл» (от греч. «хлорос» и «филлон» – лист). Спустя год Гей-Люссак «сократил» название до «хлора». Но до сих пор англичане (и американцы) называют этот элемент «хлорином» (chlorine), тогда как французы – хлором (chlore). Приняли сокращенное название и немцы – «законодатели» химии на протяжении почти всего 19 в. (по-немецки хлор – Chlor). В 1811 немецкий физик Иоганн Швейгер предложил для хлора название «галоген» (от греческих «халс» – соль, и «геннао» – рождаю). Впоследствии этот термин закрепился не только за хлором, но и за всеми его аналогами по седьмой группе – фтором, бромом, иодом, астатом.
В 1826 шведский химик Йёнс Якоб Берцелиус, уточнив полученные им же ранее данные, определил для хлора атомную массу 35,41, которая отличается от современной лишь на 0,1%! Это поразительный результат, если учесть качество оборудования, с которым работал знаменитый химик. Основной инструмент для определения атомных масс – весы. Когда-то каждый экземпляр точных аналитических весов изготовлялся мастером вручную, и стоили хорошие весы очень дорого. Поэтому лишь немногие очень богатые химики могли похвастаться такими весами. Сам Берцелиус имел в молодые годы плохо оборудованную лабораторию с довольно грубыми весами, поэтому для получения надежных результатов он был вынужден повторять один и тот же анализ по 20–30 раз! В течение 10 лет Берцелиус опубликовал результаты анализа 2000 соединений, образованных 43 элементами, и труд, затраченный им на эту колоссальную работу, превосходит всякое воображение. Спустя почти столетие другой знаменитый химик, один из первых лауреатов Нобелевской премии по химии Вильгельм Оствальд, увидев в музее оборудование, с которым работал Берцелиус, сказал: «Мне стало совершенно ясно, как мало зависит от прибора и как много от человека, который перед ним сидит».
[править] История
Впервые хлор был получен в 1774 году шведским химиком Карлом Шееле. Он описал выделение хлора при взаимодействии пиролюзита с соляной кислотой в своем трактате о пиролюзите:
4HCl + MnO2 = Cl2 + MnCl2 + 2H2O.
Шееле отметил запах хлора, схожий с запахом царской водки, его способность взаимодействовать с золотом и киноварью, а также его отбеливающие свойства. Однако Шееле, согласно господствующей тогда в химии теории флогистона, предположил, что хлор представляет собой дефлогистированую соляную кислоту, то есть оксид соляной кислоты. Бертолле и Лавуазье предположили, что хлор является оксидом элемента мурия, однако попытки его выделения оставались тщетными до времени работ Дэви, которому электролизом удалось разложить поваренную соль на натрий и хлор. В 1810 году ученый Г. Дэви выразил мнение, что этот газ является простым веществом. Через 2 года французский химик и физик Жозеф-Луи Гей-Люссак дал этому газу современное название хлор.
Название происходит от греческого χλωρός — «зеленый».
Чем опасен хлор?
Наибольшую опасность представляет хлор в сжиженном состоянии. При выбросах жидкого хлора смертельно опасную зону составляет площадь в радиусе примерно 400 м от места выброса.
Опасность хлора заключается во взаимодействии хлоргаза со слизистыми оболочками человека – образуется соляная кислота, вызывающая отёк лёгких, поражение глаз и носа, кожные раздражения. При вдыхании высоких концентраций хлора возможен смертельный исход – попадая в лёгкие, он обжигает лёгочную ткань и вызывает удушье.
Учёные предполагают, что , как и продукты его взаимодействия с другими веществами, увеличивает риск сердечно-сосудистых заболеваний, аллергических реакций и выкидышей у беременных женщин.
Признаки отравления хлором
При вдыхании хлор вызывает судорожный, мучительный кашель, в тяжёлых случаях происходит спазм голосовых связок и отёк лёгких. Хлор раздражающе действует на влажную кожу, вызывая её покраснение, могут иметь место химические ожоги и обморожение. Также хлор оказывает сковывающее воздействие на центральную нервную систему.
Первыми явными признаками отравления хлором являются:
– резкая боль в груди,
– сухой кашель,
– рвота,
– резь в глазах (слезотечение),
– нарушение координации движений.
Действия при аварии с выбросом хлора
При получении информации об аварии нужно:
– Защитить органы дыхания и поверхность тела. Лицо, нос и рот можно защитить с помощью противогазов всех типов, марлевой повязки, смоченной водой или 20 % раствором соды (1 чайная ложка на стакан воды). Средством защиты кожи может послужить любая накидка.
– Покинуть район аварии в направлении, указанном в сообщении. Вне помещения выходить из зоны химического заражения следует в сторону, перпендикулярную направлению ветра. Избегайте перехода через туннели, овраги и лощины, так как в низких местах концентрация хлора будет выше.
– Если из опасной зоны выйти невозможно, нужно остаться в помещении и произвести его герметизацию: плотно закройте окна, двери, вентиляционные отверстия, дымоходы, уплотните щели в окнах и на стыках рам. Входные двери зашторьте, используя одеяла и любые плотные ткани. При возможности поднимитесь на верхние этажи здания. Нельзя укрываться на первых этажах многоэтажных зданий, в подвальных и полуподвальных помещениях.
– Оказавшись вне опасной зоны, нужно снять верхнюю одежду и оставить её на улице.
– Как можно быстрее принять душ, промыть глаза и носоглотку.
– Наблюдать за своим самочувствием, при первом появлении признаков отравления обратиться к врачу. В ожидании помощи пострадавшему необходим покой и тёплое питьё.
Как помочь пострадавшему?
Пострадавшего от отравления хлором нужно как можно быстрее вынести из опасной зоны. При транспортировке пострадавший должен быть в горизонтальном положении.
Вне опасной зоны снимите с пострадавшего всю одежду, стесняющую дыхание, и уложите в горизонтальное положение. Необходимо обеспечить покой, тепло, приток свежего воздуха.
– обильное тёплое питьё – 2 % раствор соды, боржоми, молоко с содой, чай, кофе;
– при кашле или першении в горле необходимы тёпло-влажные ингаляции 2 % раствором соды, противокашлевые препараты;
– при слезотечении, жжении в глазах – промывание глаз водой или 2 % раствором соды. Этим же раствором нужно промыть нос. В глаза можно закапать 30 % раствор альбуцида;
– при затруднении дыхания, осиплости голоса – вводится подкожно 1 мл 0,1 %-ного раствора атропина;
– при обмороке – нужно дать понюхать нашатырный спирт. При отсутствии дыхания немедленно приступить к его восстановлению.
Хлор в жизни организмов и растений
Хлор входит в состав практически всех живых организмов. Особенность состоит в том, что присутствует он не в чистом виде, а в виде соединений.
В организмах животных и человека ионы хлора поддерживают осмотическое равенство. Вызвано это тем, что они имеют наиболее подходящий радиус для проникновения в мембранные клетки. Наряду с ионами калия Cl регулирует водно-солевой баланс. В кишечнике ионы хлора создают благоприятную среду для действия протеолитических ферментов желудочного сока. Хлорные каналы предусмотрены во многих клетках нашего организма. Посредством их происходит межклеточный обмен жидкостями и поддерживается pH клетки. Порядка 85 % от общего объема этого элемента в организме пребывает в межклеточном пространстве. Выводится из организма по мочеиспускательным каналам. Вырабатывается женским организмом в процессе кормления грудью.
На данном этапе развития тяжело однозначно сказать, какие именно заболевания провоцирует хлор и его соединения. Связано это с недостатком исследований в этой области.
Также ионы хлора присутствуют в клетках растений. Он активно принимает участие в энергетическом обмене. Без этого элемента невозможен процесс фотосинтеза. С его помощью корни активно впитывают необходимые вещества. Но большая концентрация хлора в растениях способна оказывать пагубное влияние (замедление процесса фотосинтеза, остановка развития и роста).
Однако существуют такие представители флоры, которые смогли «подружиться» или хотя бы ужиться с данным элементом. Характеристика неметалла (хлора) содержит такой пункт, как способность вещества окислять почвы. В процессе эволюции упомянутые выше растения, называемые галофитами, заняли пустые солончаки, которые пустовали из-за переизбытка этого элемента. Они впитывают ионы хлора, а после избавляются от них при помощи листопада.
Получение хлора.
Метод Шееле в настоящее время используют редко – разве только во время лекционных демонстраций. В лабораториях для получения хлора используют более сильный окислитель – перманганат калия, который окисляет соляную кислоту уже при комнатной температуре: 2KMnO4 + 16HCl 2KCl + 2MnCl2 + 8H2O + 5Cl2. Этот способ был предложен немецким химиком Карлом Гребе. Аналогично идет реакция и с дихроматом калия:
K2Cr2O7 + 14HCl 2KCl + 2CrCl3 + 3Cl2 + 7H2O. Хлор выделяется также при действии соляной кислоты на хлорную известь: Ca(OCl)Cl + 2HCl CaCl2 + Cl2 + H2O. Можно окислить соляную кислоту до свободного хлора и концентрированным раствором пероксида водорода – пергидролем (реакция лучше идет на ярком свету). В 1867 английский технолог Генри Дикон разработал непрерывный способ получения хлора путем каталитического окисления хлороводорода кислородом воздуха над медным катализатором (диконовский процесс): 4HCl + O2 2Cl2 + 2H2O. Сейчас этот метод имеет лишь историческое значение.
После того, как Алессандро Вольта создал в 1799 первый химический источник постоянного тока (вольтов столб), многие ученые начали изучать действие этого источника на различные вещества. Оказалось, что при пропускании тока через раствор поваренной соли можно получить хлор и гидроксид натрия. Однако промышленное значение этот метод приобрел только после 1872, когда для производства дешевой электроэнергии начали использовать изобретенные бельгийским мастером З.Т.Граммом динамо-машины. В настоящее время практически весь хлор получают электролизом водных растворов хлорида натрия: 2NaCl + 2H2O Cl2 + 2NaOH + H2. При этом хлор выделяется на аноде, тогда как на катоде также образуются ценные вещества – водород и гидроксид натрия. Путем повышения давления хлор сжижают и заливают в стальные баллоны, где он хранится под давлением около 6 атм. Чтобы выделяющийся при электролизе хлор не разрушал аноды, их делают из титановых сплавов и покрывают оксидами титана и рутения. Производство это энергоемкое – на тонну хлора расходуется в среднем 3000 кВт-ч электроэнергии. В развитых странах на производство хлора затрачивается около 2% всей вырабатываемой электроэнергии! Но одновременно получают и другие ценные продукты – едкий натр и водород. Получают свободный хлор в огромных количествах. Так, к началу 21 в. только в США его ежегодно производили в количестве более 11 млн. тонн!
Хлор в природе
В земной коре хлора содержится всего 0,017 %. Основная масса находится в вулканических газах. Как указано выше, вещество имеет большую химическую активность, вследствие чего в природе встречается в соединениях с другими элементами. При этом множество минералов содержат хлор. Характеристика элемента позволяет образовывать порядка ста различных минералов. Как правило, это хлориды металлов.
Также большое его количество находится в Мировом океане – почти 2 %. Это обусловлено тем, что хлориды очень активно растворяются и разносятся с помощью рек и морей. Возможен и обратный процесс. Хлор вымывается обратно на берег, а далее ветер разносит его по окрестностям. Именно поэтому наибольшая его концентрация наблюдается в прибрежных зонах. В засушливых районах планеты рассматриваемый нами газ образуется при помощи испарения воды, вследствие чего появляются солончаки. Ежегодно в мире добывают порядка 100 млн тонн данного вещества. Что, впрочем, неудивительно, ведь существует много месторождений, содержащих хлор. Характеристика его, однако, во многом зависит именно от его географического положения.
Симптомы отравления хлором
Легкая форма отравления при вдыхании хлора характеризуется раздражением слизистой оболочки верхних дыхательных путей. Человек, вдохнувший воздух с высоким содержанием токсичного вещества, ощущает жжение и дискомфорт в горле и носу. У него начинаются обильные жидкие выделения из носа и откашливание. Глаза краснеют и слезятся. Часто присоединяется общая интоксикация, проявляющаяся слабостью и головокружением. Эти признаки сохраняются в течение нескольких дней.
Симптомы интоксикации средней степени тяжести свидетельствуют о достаточно серьезном поражении дыхательной системы. Пострадавший ощущает удушье, боль в груди. Его одолевает сухой кашель. Поражение легких может привести к кратковременной остановке дыхания. При отравлении средней тяжести у пациента также наблюдается интенсивное слезотечение, сопровождающееся болью в глазах и головной болью. Страдает и нервная система: пострадавший находится либо в крайне возбужденном состоянии, либо пребывает в апатии. Если срочно не будет оказана помощь, может произойти отек легких через несколько часов после интоксикации.
Отравление хлором в тяжелой форме характеризуется, в первую очередь, нарушением сознания. Дыхание становится поверхностным и судорожным. Работа легких может остановиться, что потребует немедленной реанимации.
Молниеносная форма отравления вызывает перекрытие дыхания в результате ларингоспазма. Это приводит к потере сознания, глубокому обмороку больного. На шее и лице набухают вены. В результате молниеносного отравления хлором нарушается двигательная активность, происходит утеря контроля над мышцами, произвольная дефекация и мочеиспускание, быстро наступает летальный исход.
При контакте кожи с хлором в виде раствора появляется химический ожог. Он представляет собой покраснение и отек в месте касания, сопровождающиеся зудом и болевыми ощущениями.
Производство отравляющих газов в России
Солдаты чешского легиона русской армии в противогазах
Лошадь и человек в противогазах
Вопрос о производстве и применении химического оружия был впервые поставлен Особой распорядительной комиссией по артиллерийской части 4 марта 1915 г. Предложение было отклонено Верховным главнокомандующим по этическим соображениям. Однако, успешный опыт применения ОВ германскими войсками заставил пересмотреть эту точку зрения. 2 июня 1915 года наштаверхом генералом Н. Н. Янушкевичем было отдано распоряжение о начале работ над созданием химических боеприпасов и снабжении ими войск. 3 августа последовал приказ об образовании при Главном артиллерийском управлении (ГАУ) специальной комиссии по заготовлению удушающих средств под председательством начальника Центральной научно-технической лаборатории военного ведомства.
В 1915 г. была реализована программа развёртывания в России химического производства, координировавшаяся ген.-лейт., акад. В. Н. Ипатьевым. Быстрый рост выпуска в коксохимической и основной химической промышленности позволил снять кризисную ситуацию и производить химическое оружие в больших масштабах. В августе 1915 г. был произведен первый промышленный хлор, в октябре началось производство фосгена. В феврале 1916 года в Томском университете силами местных учёных было организовано производство синильной кислоты.
К осени 1916 года требования армии на химические 76-мм снаряды удовлетворялись полностью: армия получала ежемесячно 5 парков (15000 снарядов), в том числе 1 парк ядовитый и 4 удушающих. В начале 1917 года были разработаны и готовились к применению в боевых условиях 107-мм пушечные и 152-мм гаубичные химические снаряды. Весной 1917 года в войска стали поступать химические боеприпасы для миномётов и ручные химические гранаты.
В широких масштабах химическое оружие было применено русской армией летом 1916 г. в ходе Брусиловского прорыва. 76-мм снаряды с ОВ удушающего (хлорпикрин) и ядовитого (фосген, венсинит) действия показали свою высокую эффективность при подавлении артиллерийских батарей противника. Полевой генерал-инспектор артиллерии телеграфировал начальнику ГАУ, что в майском и июньском наступлении 1916 года химические 76-мм снаряды «оказали большую услугу армии».
Кроме борьбы с артиллерией противника, где химические снаряды были особенно эффективны, тактика применения химического оружия российской армией предполагала использование химических снарядов как вспомогательного средства, для того чтобы заставить противника покинуть укрытия и сделать его досягаемым для артиллерийского огня обычными боеприпасами. Производились также и комбинированные атаки: создание газовой волны (газобаллонная атака) и обстрел не затронутых ею целей химическими снарядами.
Свойства
Водный раствор хлористого водорода называется соляной кислотой. При растворении в воде протекают следующие процессы:
-
- HCl+H2O→H3O++Cl−{\displaystyle {\mathsf {HCl+H_{2}O\rightarrow H_{3}O^{+}+Cl^{-}}}}
Процесс растворения сильно экзотермичен. С водой HCl образует азеотропную смесь, содержащую 20,24 % HCl.
Соляная кислота является сильной одноосновной кислотой, она энергично взаимодействует со всеми металлами, стоящими в ряду напряжений левее водорода, с основными и амфотерными оксидами, основаниями и солями, образуя соли — хлориды:
-
- Mg+2HCl→MgCl2+H2↑{\displaystyle {\mathsf {Mg+2HCl\rightarrow MgCl_{2}+H_{2}\uparrow }}}
- FeO+2HCl→FeCl2+H2O{\displaystyle {\mathsf {FeO+2HCl\rightarrow FeCl_{2}+H_{2}O}}}
Хлориды чрезвычайно распространены в природе и имеют широчайшее применение (галит, сильвин). Большинство из них хорошо растворяется в воде и полностью диссоциируют на ионы. Слаборастворимыми являются хлорид свинца(II) (PbCl2), хлорид серебра (AgCl), хлорид ртути(I) (Hg2Cl2, каломель) и хлорид меди(I) (CuCl).
При действии сильных окислителей или при электролизе хлороводород проявляет восстановительные свойства:
-
- MnO2+4HCl→MnCl2+Cl2↑+2H2O{\displaystyle {\mathsf {MnO_{2}+4HCl\rightarrow MnCl_{2}+Cl_{2}\uparrow +2H_{2}O}}}
При нагревании хлороводород окисляется кислородом (катализатор — хлорид меди(II) CuCl2):
-
- 4HCl+O2→2H2O+2Cl2↑{\displaystyle {\mathsf {4HCl+O_{2}\rightarrow 2H_{2}O+2Cl_{2}\uparrow }}}
Концентрированная соляная кислота реагирует с медью, при этом образуется комплекс одновалентной меди:
-
- 2Cu+4HCl→2HCuCl2+H2↑{\displaystyle {\mathsf {2Cu+4HCl\rightarrow 2H+H_{2}\uparrow }}}
Смесь 3 объемных частей концентрированной соляной и 1 объемной доли концентрированной азотной кислот называется «царской водкой». Царская водка способна растворять даже золото и платину. Высокая окислительная активность царской водки обусловлена присутствием в ней хлористого нитрозила и хлора, находящихся в равновесии с исходными веществами:
-
- 4H++3Cl−+NO3−→NOCl+Cl2+2H2O{\displaystyle {\mathsf {4H^{+}+3Cl^{-}+NO_{3}^{-}\rightarrow NOCl+Cl_{2}+2H_{2}O}}}
Благодаря высокой концентрации хлорид-ионов в растворе металл связывается в хлоридный комплекс, что способствует его растворению:
-
- 3Pt+4HNO3+18HCl→3H2PtCl6+4NO↑+8H2O{\displaystyle {\mathsf {3Pt+4HNO_{3}+18HCl\rightarrow 3H_{2}+4NO\uparrow +8H_{2}O}}}
Присоединяется к серному ангидриду, образуя хлорсульфоновую кислоту HSO3Cl:
-
- SO3+HCl→HSO3Cl{\displaystyle {\mathsf {SO_{3}+HCl\rightarrow HSO_{3}Cl}}}
Для хлороводорода также характерны реакции присоединения к кратным связям (электрофильное присоединение):
-
- R-CH=CH2+HCl→R-CHCl-CH3{\displaystyle {\mathsf {R{\text{-}}CH{\text{=}}CH_{2}+HCl\rightarrow R{\text{-}}CHCl{\text{-}}CH_{3}}}}
- R-C≡CH+2HCl→R-CCl2-CH3{\displaystyle {\mathsf {R{\text{-}}C\equiv CH+2HCl\rightarrow R{\text{-}}CCl_{2}{\text{-}}CH_{3}}}}
Плотность хлора
При нормальных условиях хлор представляет собой тяжелый газ, плотность которого приблизительно в 2,5 раза выше плотности воздуха. Плотность газообразного и жидкого хлора при нормальных условиях (при 0°С) равна, соответственно 3,214 и 1468 кг/м3. При нагревании жидкого или газообразного хлора его плотность снижается из-за увеличения объема вследствие теплового расширения.
Плотность газообразного хлора
В таблице представлены значения плотности хлора в газообразном состоянии при различных температурах (в интервале от -30 до 140°С) и нормальном атмосферном давлении (1,013·105 Па). Плотность хлора меняется с изменением температуры — при нагревании она уменьшается. Например, при 20°С плотность хлора равна 2,985 кг/м3, а при повышении температуры этого газа до 100°С, величина плотности снижается до значения 2,328 кг/м3.
t, °С | ρ, кг/м3 | t, °С | ρ, кг/м3 |
---|---|---|---|
-30 | 3,722 | 60 | 2,616 |
-20 | 3,502 | 70 | 2,538 |
-10 | 3,347 | 80 | 2,464 |
3,214 | 90 | 2,394 | |
10 | 3,095 | 100 | 2,328 |
20 | 2,985 | 110 | 2,266 |
30 | 2,884 | 120 | 2,207 |
40 | 2,789 | 130 | 2,15 |
50 | 2,7 | 140 | 2,097 |
При росте давления плотность хлора увеличивается. Ниже в таблицах приведена плотность газообразного хлора в интервале температуры от -40 до 140°С и давлении от 26,6·105 до 213·105 Па. С повышением давления плотность хлора в газообразном состоянии увеличивается пропорционально. Например, увеличение давления хлора с 53,2·105 до 106,4·105 Па при температуре 10°С приводит к двукратному увеличению плотности этого газа.
↓ t, °С | P, кПа → | 26,6 | 53,2 | 79,8 | 101,3 |
---|---|---|---|---|
-40 | 0,9819 | 1,996 | — | — |
-30 | 0,9402 | 1,896 | 2,885 | 3,722 |
-20 | 0,9024 | 1,815 | 2,743 | 3,502 |
-10 | 0,8678 | 1,743 | 2,629 | 3,347 |
0,8358 | 1,678 | 2,528 | 3,214 | |
10 | 0,8061 | 1,618 | 2,435 | 3,095 |
20 | 0,7783 | 1,563 | 2,35 | 2,985 |
30 | 0,7524 | 1,509 | 2,271 | 2,884 |
40 | 0,7282 | 1,46 | 2,197 | 2,789 |
50 | 0,7055 | 1,415 | 2,127 | 2,7 |
60 | 0,6842 | 1,371 | 2,062 | 2,616 |
70 | 0,6641 | 1,331 | 2 | 2,538 |
80 | 0,6451 | 1,292 | 1,942 | 2,464 |
90 | 0,6272 | 1,256 | 1,888 | 2,394 |
100 | 0,6103 | 1,222 | 1,836 | 2,328 |
110 | 0,5943 | 1,19 | 1,787 | 2,266 |
120 | 0,579 | 1,159 | 1,741 | 2,207 |
130 | 0,5646 | 1,13 | 1,697 | 2,15 |
140 | 0,5508 | 1,102 | 1,655 | 2,097 |
↓ t, °С | P, кПа → | 133 | 160 | 186 | 213 |
---|---|---|---|---|
-20 | 4,695 | 5,768 | — | — |
-10 | 4,446 | 5,389 | 6,366 | 7,389 |
4,255 | 5,138 | 6,036 | 6,954 | |
10 | 4,092 | 4,933 | 5,783 | 6,645 |
20 | 3,945 | 4,751 | 5,565 | 6,385 |
30 | 3,809 | 4,585 | 5,367 | 6,154 |
40 | 3,682 | 4,431 | 5,184 | 5,942 |
50 | 3,563 | 4,287 | 5,014 | 5,745 |
60 | 3,452 | 4,151 | 4,855 | 5,561 |
70 | 3,347 | 4,025 | 4,705 | 5,388 |
80 | 3,248 | 3,905 | 4,564 | 5,225 |
90 | 3,156 | 3,793 | 4,432 | 5,073 |
100 | 3,068 | 3,687 | 4,307 | 4,929 |
110 | 2,985 | 3,587 | 4,189 | 4,793 |
120 | 2,907 | 3,492 | 4,078 | 4,665 |
130 | 2,832 | 3,397 | 3,972 | 4,543 |
140 | 2,761 | 3,319 | 3,87 | 4,426 |
Плотность жидкого хлора
Жидкий хлор может существовать в относительно узком температурном диапазоне, границы которого лежат от минус 100,5 до плюс 144°С (то есть от температуры плавления до критической температуры). Выше температуры 144°С хлор не перейдет в жидкое состояние ни при каком давлении. Плотность жидкого хлора в этом температурном интервале изменяется от 1717 до 573 кг/м3.
t, °С | ρ, кг/м3 | t, °С | ρ, кг/м3 |
---|---|---|---|
-100 | 1717 | 30 | 1377 |
-90 | 1694 | 40 | 1344 |
-80 | 1673 | 50 | 1310 |
-70 | 1646 | 60 | 1275 |
-60 | 1622 | 70 | 1240 |
-50 | 1598 | 80 | 1199 |
-40 | 1574 | 90 | 1156 |
-30 | 1550 | 100 | 1109 |
-20 | 1524 | 110 | 1059 |
-10 | 1496 | 120 | 998 |
1468 | 130 | 920 | |
10 | 1438 | 140 | 750 |
20 | 1408 | 144 | 573 |